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Front instabilities in a forced oscillatory medium with global coupling
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We study a two-dimensional, locally and globally coupled oscillatory system that is subjected to external
forcing at a frequency equal to twice its natural frequency. It is shown that the onset of an Ising-Bloch
transition is preceded by novel front instabilities: a pattern formation instability, wave trains along the front,
and a weak turbulence in the frontal patterns.
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I. INTRODUCTION

Bistable systems represent an important class in
theory of reaction and diffusion@1,2#. A front, sometimes
called a kink, which connects the two stable states of bi
bility rules dynamics in such systems. A front is subject
different types of instabilities, depending on the nature of
system. For example, when a motionless front loses stab
and starts propagation, it is called an Ising-Bloch transiti
This type of instability has been observed in chemical re
tions @3#, and in liquid crystals@4#.

Another type of front instability in dimension two ha
been studied by Kuramoto@5#. In this case, a front line
which initially represents a straight line, may undergo a lo
wave instability. It was shown that the resulting spatiote
poral chaotic dynamics of such a front can be described
the Kuramoto-Shivashinsky~KS! equation@6#.

A convenient model for theoretical studies of front ins
bilities is externally forced coupled oscillators, where bis
bility arises from the broken rotational symmetry of the sy
tem. It was shown that depending on the intensity of
external forcing an Ising-Bloch transition occurs@7–9# in
locally coupled oscillators.

In theoretical models as well as in experimental syste
local coupling, i.e., diffusional coupling, is not only the po
sible type of coupling between the oscillators. For examp
in surface catalytic reactions both local and global couplin
naturally arise@10,11#. An interplay of two different coupling
ranges may lead to drastic effects in these systems; fo
stance, a global coupling can suppress turbulent dynam
generated by a local coupling, or it can select a given
stable mode of turbulence@12,13#.

In this paper we study front instabilities in a two dime
sional, forced oscillatory system, where interactions betw
the oscillators are realized by both local and global c
plings. Our motivation for studying this system stems fro
the recent progress in controlling spatiotemporal chaos b
global feedback in experimental systems@14,15#. An inter-
esting question is whether a similar control can be succ
fully applied for controlling front dynamics.

This work is organized as follows. In the following se
tion we introduce our model: locally and globally couple
oscillators under external forcing. Section III is devoted
the linear stability analysis of the phase locked solutions
Sec. IV, we show the pattern formation instability of th
1063-651X/2002/66~6!/066202~6!/$20.00 66 0662
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front. In Sec. V we study bifurcations of frontal patterns.
this section, the dynamics of a front line is studied nume
cally. Section VI is devoted to discussion.

II. THE MODEL SYSTEM

The model system under study is a globally coupled
cillatory system that is subjected to an external driving fo
whose frequency is twice that of the natural frequency of
oscillators. It can be described@7–9# mathematically as a
parametrically forced complex Ginzburg-Landau equat
~CGLE! for a complex scalar fieldA(x,t),

Ȧ5~11 iv!A1~11 ia!¹2A2~11 ib!uAu2A1mĀ1gA* .
~1!

When m50 and g50, Eq. ~1! is the CGLE, a generic
model for a system exhibiting a Hopf bifurcation at ze
wave number and frequencyv0. The last term in Eq.~1!
represents the external forcing that breaks the phase sym
try of the system@16#. The frequency of the external forcin
in Eq. ~1! is twice of v0 @7#. The termĀ represents globa
coupling, i.e., a spatial average ofA, Ā5C*Adr, whereC is
a normalization coefficient@10#.

Obviously, the two last terms in Eq.~1! introduce more
complex dynamics to the CGLE which is itself very rich@2#.
However, we are concerned in this paper only with the fro
solutions of Eq.~1!, which have analytic expressions in th
variational, one-dimensional case form50. Indeed, when
the real parametersa, v, b, andm vanish, Eq.~1! can be
cast in a variational form

]A

]t
5

dF

dA
~2!

that admits solutions describing a front, or kink, which co
nects the two stationary solutionsA(x,t)56A056A11g.
There are two kinds of kink solutions, the first being an Isi
wall

I ~x;s!5sA0 tanhS 1

A2
A0xD , ~3!

wheres561 represents the polarity of the front. The oth
kind of solution is known as a Bloch wall
©2002 The American Physical Society02-1
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B~x;s!5sA0 tanh~kx!1 isA123g sech~kx!, ~4!

wherek5A2g.
It is known that the Ising wall is stable forg.gcr5

1
3 ,

while the Bloch walls are stable forg,gcr . Thus,gcr de-
notes the location of the front bifurcation in the limit of th
vanishinga, b, v, andm @8#.

Our objective in this paper is nonvariational analogues
these front solutions. As an example, in Fig. 1 we show
numerically obtained, nonvariational Bloch front in one d
mension. Depending on the sign and intensity of global c
pling, different perturbations to the front solutions can
expected. In this paper we focus on the spatial symm
restoring effect of global coupling, which occurs for a sma
negativem. It strives for the spatial symmetry between t
negative and positive amplitude domains. For example
the absence of global coupling, the front in Fig. 1 propaga
with a constant velocity, until it reaches a boundary. Ho
ever, a front may change its direction of propagation un
global coupling before reaching boundaries. This is show
Fig. 2 as a gray scale space time plot. Figure 3 shows
snapshots of the front in Fig. 2, at the times of its propa
tion to the left and to the right.

FIG. 1. A view of a nonvariational front. Solid line, ReA;
dashed line, ImA. Parameters:v520.825, a50.05, b521, g
50.18, m50. All parameters, time, and space are dimensionle

FIG. 2. Change of propagation direction under global coupli
uAu is shown. The parameters are the same as in Fig. 1 excem
520.15.
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We found that the spatial symmetry restoring global co
pling can stabilize in two dimension a circular domain that
unstable form50. The aim of this paper is to study fron
instabilities of this domain in the Benjamin-Feir unstable
gion where 11eb,0.

III. THE STABILITY OF THE PHASE LOCKED STATES

Nonvariational Ising and Bloch walls of Eq.~1! connect
two spatially uniform phase locked statesA0n56(X0n
1 iY0n)56R exp(if), whereR andf are given by

cos~2f!5~R22m̃ !/g,

sin~2f!5~v2bR2!/g,

R25
m̃1bv1@g2~11b2!2~v2bm̃!2#1/2

11b2
,

~5!

with m̃511m.
We study a linear stability of these phase locked sta

against the perturbations of the formdAeiqxelt. A linear sta-
bility analysis can be easily done, if the complex amplitudeA
in Eq. ~1! is represented by the equations for its realX and
imaginary partsY @17#. The characteristic equation is give
by

~l2m̃2g1q21A!~l2m̃1g1q21D !

5~2B2v1eq2!~2C1v2eq2!. ~6!

The A, B, C, and D in Eq. ~6! are given by the following
expressions:

A53X0n
2 1Y0n

2 22bX0nY0n ,

B52X0nY0n23bY0n
2 2bX0n

2 ,

C53bX0n
2 1bY0n

2 12X0nY0n ,

D53Y0n
2 12bX0nY0n1X0n

2 . ~7!

.

.

FIG. 3. Nonvariational fronts under global coupling. Solid lin
ReA; dashed line, ImA. Two time moments are shown. The param
eters are the same as in Fig. 2.
2-2
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The relations,A1D54R2, AD2BC53(11b2)R4, andB
2C524bR2 allow elimination of X0n and Y0n from the
characteristic equation. The root of Eq.~6!, which leads to a
pattern formation instability is

l5m̃22R22q21@11v22~v22bR22aq2!2#1/2. ~8!

In our previous paper we studied pattern formation of
phase locked states@17#. In this paper we are interested wit
the case when the phase locked states are stable, but the
is subject to pattern formation instability.

IV. PATTERN FORMATION OF THE FRONT

As analytical forms of front solutions are unknown in th
nonvariational case, their linear stability analyses are
straightforward. Nevertheless, approximate analysis alon
front position can be conducted to show pattern formation
the front.

Assume that in a two-dimensional system, two paral
rectangular domains of equal size are chosen as an in
condition. Then, for the Ising front,Ā→0. Assume also tha
the front is parallel to they axis. By making a cross sectio
perpendicular to they axis, it can be seen~see Fig. 1! that a
domain wall which connects the two phase locked state
an extended object along thex axis. By choosing an initial
position in thex axis, a number of front lines parallel to th
y axis can be drawn. These lines can be characterized
their amplitude values. For instance, the real part of th
amplitudes are defined in the interval 0<uAf ront(x)u,R,
whereR is given by Eq.~5!. As an Ising front is motionless
and stable, a front line in this regime can be considere
steady, uniform state. In other words, in an Ising regime fr
lines behave like the phase locked states. Hence, a li
stability analysis of a front line can be conducted in the sa
way as it was done for the phase locked states@17#. If a
number of these lines undergo a wave number instability,
can expect that the front exhibits the same instability. The
fore, we approximate the linear stability analysis of the fro
by the linear stability analyses of the front lines.

A linear stability analysis of theA50 solution, i.e, the
Af ront50 line, against perturbationsdAeiqlel1t is given by

l15m̃2q22Ag22~v2aq2!2. ~9!

Note that l is a coordinate along the front line, which
parallel to they axis. Alongl, a linear stability analysis of the
lines with 0,uAf ront(x)u,R can also be performed. A pe
turbation of theA5Af ront(x) states bydAeiqlel2t leads to

l25m̃22uAf ront~x!u22q21$11v2

2@v22buAf ront~x!u22aq2#2%1/2. ~10!

In this paper, we will useg as a control parameter. From no
we fix other parameters atv520.825, a52, b521, m
520.15. For these parameters and for 0.8<uAf ront(x)u2

<0.9, Eq.~10! has linear spectra with a positive maximu
at nonzeroq. The two solid curves in Fig. 4 show linea
spectra for the front linesuAf rontu250.8 anduAf rontu250.9.
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These curves display positive maxima at some criticalqcr .
The dashed curve in Fig. 4 shows linear spectra for
Af ront50. It has a positive maximum atq50. There is no
positive maximum for the phase locked statesR251.17
~long-dashed curve!; all wave numbers are stable for th
case. Thus, Fig. 4 shows that for parameters we have cho
several front lines have the most unstable mode; hence,
der suitable conditions leading to a wave number select
pattern formation can be expected in the neighborhood
these lines.

In our simulations withm50, a narrow parameter regio
was detected for a clearly pronounced, stable pattern for
tion of the front. Moreover, with the change of the contr
parameter, a front transition leading to a collapse of dom
may occur.

Numerical results show that for a small and negat
value of m, the phase locked solutions, as well as the n
variational domain walls, still remain structurally stable. B
more importantly, regardless of their initial sizes two d
mains acquire an equal size ifm,0. This means that if an
initial condition is chosen to be two domains, then at a s
ficiently long run,Ā→0. Unlike the casem50, there is no
collapse of a domain. With a gradual decrease ofg, global
coupling continues to forceĀ→0, and this delays the fron
transition. Thus, the front remains almost stationary for
interval of the control parameter. Before the onset of
Ising-Bloch transition, pattern formation can be detect
This is shown in a three-dimensional plot of a front in Fig.
There are no pattern formations for the phase locked s
tions in Fig. 5, but the front exhibits roll patterns. The wav
length of the roll patterns is given by

qcr5F11va

11a2
22uAf rontu2

11ab

11a2 G 1/2

. ~11!

A Fourier transform of the roll patterns in Fig. 5 shows th
from the spectrum of the critical wave numbers displayed
the front lines, a wave number for the line withuAf rontu2

'0.9, which has a larger critical wave number has be
selected. Note that the selected pattern covers all front a
in Fig. 5, though according to the linear stability analys
near the region corresponding toA50, no pattern formation

FIG. 4. Linear spectra for the fixed solution~long-dashed line!,
for front lines with maximum unstable modes~solid lines!, and for
A50 solution~dashed line!. g50.38.
2-3
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was expected. However, it can be shown that for a sligh
larger value ofg, pattern formation emerges only at certa
areas of the front, in accordance with the linear stabi
analysis.

V. FRONT LINE INSTABILITIES

In this section we numerically study Eq.~1! in dimension
two. The numerical method is described in Ref.@17#. The
system size isLx5Ly5256, dx50.5, dt50.02. As an initial
condition, we take a small rectangular domain inside a lar
rectangular domain. Ifm50, the larger domain would in
vade the smaller one; however, the presence of a global
pling term forcesĀ→0, and it stabilizes a circular domain.
front is an interface between the domains. In Fig. 6, it is
area between the darkest and brightest circles. The cor
the front can be defined as the region where the real am
tudeuAu approaches its minimum. In an Ising regime, a fro
has a regular shape. With the decrease ofg, the front losses
its circular shape, but a cellular pattern along the fro
emerges, as in Fig. 6~b!. This pattern formation is associate

FIG. 5. A three-dimensional view of ReA. g50.38.

FIG. 6. Front dynamics versusg. ReA is shown.~a! Ising re-
gime; g50.4. ~b! Pattern formation along the front line;g50.38.
~c! Wave trains;g50.37. ~d! A weak turbulence of wave trains
g50.32.
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with the most unstable wave number of the front lines,
discussed in the preceding section.

With the further decrease ofg, the pattern along the fron
starts to propagate, Fig. 6~c!. For the set of parameters use
in Fig. 6, l,0 for all q in Eq. ~10! ~see the long-dashe
curve in Fig. 1!. Hence, the phase locked solutions are stab
and the inner part of the domains are uniform. Therefore,
pattern propagation along the front gives the impression
domain rotation. Further decrease ofg causes chaotic pat
terns along the front, as in Fig. 6~d!. Thus, Figs. 6~b!–6~d!
illustrate that front instabilities precede an Ising-Bloch tra
sition. We note that atgcr'0.25, an Ising-Bloch transition
occurs, and the white domain in Fig. 6 starts to tra
through the dark domain. In this regime, very complicat
structures can be seen along the front of a moving doma

A typical amplitude profile in an Ising regime is shown
Fig. 7. As structure of Re(A) is rather simple then ImA, we
will use the real part ReA for a characterization of a fron
line location and its dynamics. For simplicity, we define
variable which is given by distance from the center of t
system (x0 ,y0) to the front line where A50, r
5A(x02xReA50)21(y02yReA50)2. To plot this variable we
choose a position on the front line and calculater for it.
Then, moving clockwise, we search for the next closest po
where ReuAu5ReuAminu, andr for this point is calculated. In
this way, we calculate and recordr ’s value along the front
until the first point is reached and the front line is closed. F
instance, if a front line has a circular shape, as in Fig. 6~a!, r
5 const. Thus, plotting ofr will produce a line. For a front
like that shown in Fig. 6~b!, the plotting ofr will produce a
regular periodic structure.

In Fig. 8, we show a gray-scale space time plot ofr for
three different values ofg. Note that to save space we hav
shown dynamics only on the quarter part of the front lin
The first column in Fig. 8 shows Turing-Hopf-like structure
one-dimensional cellular structures that appear in an osci
ing manner. With the decrease ofg, cellular structures star
to propagate with a constant velocity, as shown in the sec
column of Fig. 8. In this regime, global coupling still re
mains small, but its oscillation near zero causes perturbat
which trigger wave trains. With the further decrease ofg, a
partial deformation of cellular structures occurs, and it see
that the emerging dynamics can be best characterized

FIG. 7. A typical view of a nonvariational Ising wall. The soli
line shows the imaginary part, and the dashed line shows the
part of the complex amplitudeA. g50.4.
2-4
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weak turbulence of wave trains@6#, as seen in the last col
umn of Fig. 8.

In Fig. 9 we over plot the front lineAf ront50 at three
different time moments when the system is in a regime c
responding to the last column of Fig. 8. The values ofr along
the front line at a given moment are shown in Fig. 10. W
calculated temporal and spatial correlation functions
Dr ( l ,t)5r ( l ,t)2 r̄ (t), where r̄ is the spatial average ofr.
These functions are defined by

CDr~ t !5^Dr ~ l 8,t !Dr ~ l 8,t1t8!&/^~Dr !2&,

CDr~ l !5^Dr ~ l ,t8!Dr ~ l 1 l 8,t8!&/^~Dr !2&,
~12!

where^••& represents an average overl 8 and t8. In Fig. 11
we showCDr(t) for two differentg. As the solid line in Fig.
11 shows, at smallert, r ( l ) oscillates around its mean almo
periodically. However, ast grows these oscillations becom
irregular. With the decrease ofg, correlation time slightly
increases, the dashed line Fig. 11. It means that the frequ
of r ’s oscillation near its mean decreases with the decreas
g. Figure 12 shows spatial correlation functions at two d

FIG. 8. Space time plots of structures formed by a front lin
From the left, the Turing-Hoph pattern, traveling waves, and fr
turbulence.

FIG. 9. Overplots of a front line exhibiting turbulence. Thre
different time moments are shown.
06620
r-

f

cy
of

-

ferentg. The decay ofCDr( l ) is not sharp at smallx; longer
waves are dominant in the spatial distributions ofr. Correla-
tion length also increases with the decrease ofg, Fig. 12 the
dashed line. Numerical experiments show that the fr
width increases with the decrease ofg. Such increase in
width weakens small scale spatial perturbations tor. Slow
decays of temporal and spatial correlation functions in Fi
11, 12 indicate a weakness of turbulent dynamics.

In Fig. 13, we plot a long time average^Cq
2& versusq,

whereCq5*r ( l ) eiql dl. A high spectrum at smallq is due
to the perturbations of global coupling. The maximum atq
Þ0 corresponds toq'0.4 which is close to theqcr given by
Eq. ~11!. Shorter waves in Fig. 13 decay by a power la
^Cq

2&;q2s, with s'2.45. With the decrease ofg, the
maximum gradually disappears ands decreases. Interest
ingly, having a maximum and a power law decay at shor
waves are known features of the fluctuation spectrum o
stationary turbulent state of the KS equation. However, in
phase turbulence of the KS, shorter waves decay by^Cq

2&
;q2s, with s52. This implies loss of long range order@6#.
For parameters we have fixed, the fluctuation of@]r ( l )/] l #
seems to depend onq. Thus, unlike the phase turbulence
the KS, a coherence loss might be slower in our case. M
accurate computations are desirable in different param
regions of Eq.~1!, and for larger system size to elucida
scaling nature of the front line turbulence.

VI. DISCUSSION

Pattern formation and turbulence of a wave front in ge
eral, two-dimensional reaction diffusion models with bistab

.
t

FIG. 10. A chaotic pattern along the front line.

FIG. 11. Time correlation functions. Solid line,g50.32; dashed
line, g50.28.
2-5
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D. BATTOGTOKH PHYSICAL REVIEW E66, 066202 ~2002!
kinetics were theoretically predicted a few decades ago@5,6#.
Later, these front instabilities have been studied in a reac
diffusion system with autocatalytic kinetics@18,19#. Re-
cently, complex front dynamics have been studied in a tw
dimensional oscillatory medium in the 3:1 resonance regi
i.e., when the external forcing frequency is three times of
natural frequency@20,21#. We have shown in this paper pa
tern formation and a weak turbulence of the front in the
resonance system with a global coupling. We studied fr
dynamics of a circular domain which is unstable in the a
sence of global coupling. However, for special initial a
boundary conditions@20#, global coupling is not necessar
for stabilization of a band shaped domain. A front of su
domain shows the effects we have discussed here. We fo
that the spatial symmetry restoring perturbations sign
cantly widens a parameter region for these effects.

FIG. 12. Spatial correlation functions. Solid line,g50.32;
dashed line,g50.28.
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Our simulations show that global coupling can chan
direction of front propagation in the 2:1 resonance syste
However, we found that the spatial symmetry restoring g
bal coupling does not control the width of front. Besides,
a result of alternation of propagation direction, correlati
time, and length of the functionDr which characterizes fron
line location may drop significantly. Thus, global couplin
can be a destabilizing factor for the front line position.

Finally, we suppose that the front line instabilities w
have studied in this paper can be observed in experime
systems.
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FIG. 13. Log-log plot of fluctuation spectrum of chaotic patter
formed by the front line.
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